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1 Introduction and background

Optimization problems are ubiquitous. Diverse applications in mathematics, science, and
engineering all rely on optimization, such as training statistical models for image recognition
tasks, inverse materials design problems, and control of nonlinear dynamical systems. The
analysis and design of computationally efficient optimization algorithms is essential for powering
these common use-cases across applied mathematics.

The goal of this proposal is to apply variational mechanics to analyze fast first-order algorithms
for constrained optimization and for adaptive control. Interest in first-order algorithms has
exploded in recent years due to the proliferation of high-dimensional statistical models [1].
“Accelerated” algorithms that achieve optimal convergence rates such as Nesterov’s celebrated
method [2] have been designed for unconstrained optimization [3]. However, our understanding of
first-order methods for constrained problems is comparatively limited: for example, fundamental
limits on convergence speed are still unknown. Constrained methods are critical for solving
high-dimensional statistical problems, where constraints are used to impose sparsity or low-rank
structure. Research in adaptive control has also taken off in recent years due to promising
applications in robotics and as a model of reinforcement learning [4]. Variational mechanics
provides a common methodology for deriving both optimization and adaptive control algorithms.

A significant difficulty in designing fast first-order methods for constrained optimization and
adaptive control is the non-intuitive structure of accelerated methods. While technically sound,
their convergence proofs are algebraic, and infamously exploit obtuse inequalities at key points.
An appealing alternative is to use variational methods, which provide a systematic approach
to derive continuous time limits of accelerated optimization algorithms [5]. These limits can
then be carefully discretized to obtain an implementation with guarantees that match those
of the continuous equation. Symplectic integration has been particularly useful in providing
such rate-matching discretizations [6, 7]. While this general approach has proved successful in
unconstrained optimization, adding constraints poses some significant mathematical challenges.
Similarly, the discretization of continuous adaptive control algorithms derived through variational
procedures has not been studied, which is essential for understanding if accelerated convergence
is possible at all in adaptive control.

2 Previous work

Continuous time limits are appealing in the design of fast constrained optimization algorithms
because they often provide intuitive interpretations of accelerated unconstrained methods [8].
Let x ∈ Rn be a vector of parameters, f : Rn → R be a convex loss function, and αt : R≥0 → R,
βt : R≥0 → R, γt : R≥0 → R be time-dependent scaling factors. Many algorithms can be derived
through variational mechanics from a single object known as the Bregman Lagrangian

L = eγt−αt ∥ẋ∥22 − eαt+βt+γtf(x), (1)

which reveals an underlying geometric principle for acceleration [5]. Accelerated algorithms follow
a single optimal curve in parameter space determined by the loss function (Figure 1), and the
discrete implementation dictates how many steps it takes to traverse the curve. The norm ∥·∥2
in (1) can be replaced with a more general distance measure known as a Bregman divergence,
which is restricted to the Euclidean norm here for simplicity.

In continuous time, convergence proofs are derived through analysis techniques classically
applied to nonlinear dynamical systems such as Lyapunov theory [9] and contraction analysis [10].
Algorithm design is completed by discretizing the continuous dynamics, so that the existence of (1)
reduces deriving a discrete implementation to numerical analysis of its Euler Lagrange equations.
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Through past research in nonlinear dynamical systems, control theory, and computational physics,
the PI is well equipped to tackle problems with these two diverse skillsets.

In his thesis work, the PI applied (1) to the setting of adaptive control [11], and a new class
of Nesterov-like adaptive control algorithms was derived and proven to be globally convergent
through Lyapunov theory. An analogy to mirror descent in optimization [12] was used to design
a second new class of adaptive control methods that exploit non-Euclidean geometry. The
implicit regularization of these algorithms was categorized by analogy to their optimization
counterparts [13], and they were subsequently applied to several interdisciplinary problems such
as sparse identification of a chemical reaction network, sparse identification of a Hamiltonian
consistent with a physical system, and control of a dynamical system with control primitives.
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Figure 1: The curve which minimizes (1)
is shown in black, and a suboptimal curve
is shown in gray. All algorithms generated
by (1) follow the black curve. A trajectory
from Nesterov’s accelerated method [2] is
illustrated in circles, and a trajectory from
a slower, suboptimal, method is in crosses.
Nesterov’s method takes larger steps and
optimizes faster.

In another work, the PI used contraction analysis to
analyze distributed first-order stochastic optimization
algorithms from a continuous time lens [14]. New con-
vergence theorems relevant for training high-dimensional
statistical models were proven, and novel insight was
gained into the behavior of distributed stochastic algo-
rithms through synchronization theory. Synchronization
of the distributed optimizers induced by communication
was shown to reduce their individual noise levels, and
predictions of the theory were verified through numerical
simulation on image recognition tasks.

In numerical analysis and computational physics,
the PI developed in his thesis work a three-dimensional
projection algorithm for simulating the deformation
of hard amorphous materials based on a mapping to
computational fluid dynamics [15]. The algorithm was
also extended to more general domains and boundary
conditions using a coordinate transformation methodol-
ogy [16]. As a Fulbright Scholar, the PI developed a finite difference approach for solving the
Hartree-Fock equations from condensed matter physics in real space [17].

3 Manifold constrained optimization

Present approaches for the development of accelerated manifold-constrained optimization al-
gorithms are limited in scope, because the algebraic inequalities used to prove acceleration in
Euclidean space often break down in the manifold setting. Remarkably, the variational formu-
lation afforded by (1) provides a simple method to handle manifold constraints by analogy to
holonomic constraints in physics. Consider the equality constrained minimization problem

min
x

f(x) subject to g(x) = 0 (2)

with g : Rn → Rm. If the constraint Jacobian has rank m globally, the surface g(x) = 0 has
the structure of a differentiable manifold M and admits local coordinates q (Figure 2). Let
q⊥ denote local coordinates orthogonal to M, and define a potential function UN (q, q⊥) =

f(x(q, q⊥)) +N
∥∥q⊥∥∥2

2
, which imposes a quadratic penalty for constraint violation.

Consider the motion of a particle xN (t) described by (1), but replace the loss f(x) with
the potential UN (q, q⊥). Then the limit x∞(t) = limN→∞ xN (t) exists and is a solution to the
Euler-Lagrange equations d

dt
∂L∗
∂q̇ = ∂L∗

∂q where L∗ is the Lagrangian with q⊥ = q̇⊥ = 0 [18].
Manipulation of these equations leads to the master dynamics

q̈i + (γ̇t − α̇t) q̇i +
∑
b,e

Γi
b,eq̇

bq̇e + eβt+2αtgrad(f)i = 0, (3)
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with Γi
b,e the Christoffel symbols for the metric on M and where grad(·) denotes the Rie-

mannian gradient in local coordinates. The solution curve x(q(t)) to (3) lies entirely on
M by construction. Moreover, (3) has striking theoretical appeal. It takes a similar form
to the master equation generated by (1), but has three key differences: it is written en-
tirely in local coordinates on the manifold, an additional term dictated by the manifold ge-
ometry appears, and the gradient is replaced by the Riemannian gradient on the manifold.

Figure 2: Originally developed for con-
strained physical problems, Lagrangian
mechanics leads to a generative procedure
for deriving fast optimization algorithms
on manifolds.

A convergence rate of the master equation
(3) will be proven through explicit construction
of a Lyapunov function by analogy to the un-
constrained case [5]. The unconstrained Lya-
punov function will be modified to account for
the geometry-dependent term in (3), and alterna-
tive assumptions on f may be required for con-
vergence, such as geodesic convexity on M [19].

In the unconstrained setting, a Lyapunov ar-
gument shows that the convergence rate of the
master dynamics is dictated by the scaling factors,
and their choice sets the underlying algorithm.
Therefore, once a Lyapunov function has been
constructed for the manifold constrained setting,
the landscape of possible algorithms generated

by (3) can be easily categorized through choice of scaling factors. In particular, picking the
scaling factors to correspond to common convergence rates such as O(1/t),O(1/t2), and O(e−λt)
for λ > 0 will provide explicit upper bounds on convergence rates for Riemannian optimization.

To derive implementations, two discretization techniques are proposed inspired by classical
mechanics and optimization, respectively. The Hamiltonian form of (3) will be discretized via
symplectic integration [7], while a linear coupling scheme [20] will be applied directly to (3).
Convergence rates for the discrete iterations will be obtained through discrete time Lyapunov
theory by analogy to the unconstrained case [21].

(3) may be expensive to implement if the manifold is high-dimensional or if calculation of x(q) is
computationally intensive. The first and third term can be written without reference to coordinates
as ∇ẋ where ∇ denotes the Levi-Cevita connection. Guided by this observation, convergence
and discretization of the coordinate agnostic dynamics ∇ẋ+ (γ̇t − α̇t) ẋ+ eβt+2αtgradf(x) = 0
will be studied through identical Lyapunov approaches, where x is a point on M.

4 Inequality constrained optimization

Consider the inequality constrained problem with gi : Rn → R and all gi convex,

min
x

f(x) subject to gi(x) < 0, i = 1, . . . ,m. (4)

Many statistical problems such as compressed sensing [22] and matrix completion [23] employ
inequality constraints. While some accelerated methods for this setting are known [24], there is no
systematic generative procedure to derive accelerated methods, and no geometric understanding
as provided by (1) for unconstrained optimization. For (4), the modified Bregman Lagrangian

L = eγt−αt ∥ẋ∥22 − eαt+βt+γt
(
f(x) + eδtp(x)

)
, (5)

is proposed, which contains a new scaling factor δt : R≥0 → R and a function p(x) : Rn →
R. The penalty term p(x) is chosen to impose inequality constraints, while the scale fac-
tor δt provides a degree of freedom to relax or increase the penalty with time. To un-
derstand the role of geometric effects in fast optimization, such as specular reflection off
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the constraint boundary, two penalty models (Figure 3) will be studied corresponding to
hard and soft constraints. The Lyapunov function for the unconstrained setting [5] will
be modified to account for the new penalty term to study convergence rates in both cases.

Figure 3: The geometry of hard (blue) and
soft (orange) constraints over the disk (yel-
low).

For soft constraints, transient constraint
violation will be tolerated throughout opti-
mization, but the structure of the loss func-
tion will be preserved inside the feasible re-
gion. Performance of polynomial penalties
p(x) =

∑
imax(0, gi(x)

k) for k an integer
greater than one will be categorized. Phys-
ically, this scenario corresponds to a heavy
ball rolling with friction up the side of a poten-
tial. Here, δt will be chosen as an increasing
function of time to ensure the constraints are
asymptotically satisfied.

Hard constraints can be implemented us-
ing self-concordant barriers, such as the loga-
rithmic barrier p(x) = −

∑
i log(−gi(x)) [25].

Here, p diverges on the boundary of the con-
straint set, but is nonzero on the interior. This
ensures that constraints will not be violated throughout optimization, and physically corresponds
to a smooth infinite potential at the boundary of the constraint region. δt will be chosen as a
decreasing function of time to restore the loss surface inside the feasible region asympotically
and ensure convergence to a minimizer of f .

5 Accelerated adaptive control

Adaptive control theory is the study of concurrent learning and control of dynamical systems.
Consider a nonlinear dynamical system ẋ = f(x, t) − Y (x, t)a + u(x, t), with x ∈ Rn the
state, a ∈ Rp an unknown vector of parameters, f : Rn × R≥0 a known nominal dynamics,
Y : Rn × R≥0 → Rn×p a known regressor, and u : Rn × R≥0 → Rn the input to the system.
Adaptive control uses the input u = Y (x, t)â(t) + ud(x, t) where ud controls the system towards
a desired trajectory xd(t) in the absence of the unknown Y (x, t)a. A continuous optimization
algorithm d

dt â must then be specified to maintain stability and ensure that x(t) → xd(t).
A variational approach for adaptive control was recently developed by the PI via the Bregman

Lagrangian [11]. The Euler-Lagrange equations were shown to be stable, convergent, and
qualitatively similar to Nesterov’s method. However, naive discretizations with standard methods,
such as forward Euler and Runge-Kutta approaches, show nearly identical trajectories to classic
algorithms (Figure 4). This parallels the optimization setting, where discretization must be
performed carefully to match the rate of the continuous dynamics, and raises a fundamental
question: do there exist accelerated algorithms for adaptive control?

Unlike in optimization, where (1) defines an optimal curve and the discrete iteration dictates
the rate at which that curve is traversed, a timescale is fixed by the system in adaptive control.
Moreover, because the system and adaptation algorithm are coupled in feedback, an optimal
curve cannot be specified through parameter space alone. For these geometric reasons, accelerated
convergence may be forbidden in adaptive control.

To answer this question, convergence rates will be analyzed through Lyapunov theory for
classic gradient-like adaptive control algorithms and new Nesterov-like algorithms derived via (1).
Convergence in adaptive control is generally guaranteed asymptotically, because an arbitrary
xd(t) may change suddenly at large time, which forbids finite time guarantees. As a resolution,
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the study of convergence to constant desired trajectories is proposed, where it will be possible to
perform a non-asymptotic analysis. In addition to characterizing convergence rates, this analysis
will elucidate the dependence of convergence guarantees on relevant problem parameters such as
the ambient dimension of the system and the number of unknowns, which can then be used to
design mirror descent algorithms with improved dependencies.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

2

0

2

4

pa
ra

m
et

er
 v

al
ue

s

Figure 4: Four parameter trajectories for
gradient descent-like (solid) and Nesterov-like
(dashed) adaptive control methods, integrated
with a fourth-order Runge-Kutta scheme, for
control of a double pendulum. The parame-
ter trajectories for the two methods lie directly
on top of each other and are shifted for visual
clarity.

If convergence rates match for the two
classes of methods in continuous time, one pos-
sibility is that Nesterov-like algorithms may
allow for less frequent updates, akin to larger
steps in optimization. By analogy to effective
discretization schemes in optimization, max-
imal timesteps will be probed for symplectic
methods and linear coupling schemes, both
analytically and numerically. To decouple the
system timestep from the algorithm timestep
for analytical treatment, the system will be as-
sumed continuous while the parameter updates
will be left as a discrete iteration.

6 Significance and broader impacts

The mathematical questions described in this
proposal are of both fundamental and applied
interest in the areas of statistics, optimization,

and control. Because the proposed variational procedures may lead to new algorithms with diverse
applications, the PI will develop and release freely available open source software with efficient
implementations. The PI’s experience contributing to the open source code PARSEC [26, 17]
will be helpful in this area.

The PI will pursue research opportunities for motivated undergraduates interested in optimiza-
tion and dynamical systems, and will be proactive about offering projects to underrepresented
minorities and women. One project suitable for an undergraduate with an advanced applied
mathematics background would be to contribute to implementations of the manifold constrained
algorithms derived via (3), which could later be released as an open source package for Rieman-
nian optimization. A second, more applied, project could be to implement discretizations of
Nesterov-like adaptive control laws on real robotic hardware and compare their performance to
pre-existing approaches.

7 Sponsoring scientist, institution, and career development

The sponsoring scientist has deep expertise in optimization and statistics, and has made founda-
tional contributions to both fields. His experience in these areas complements the PI’s strengths
in nonlinear dynamical systems, numerical analysis, and adaptive control. The sponsoring
institution, The University of California at Berkeley, has many excellent researchers in statis-
tics, optimization, and control such as B. Recht, P. Bartlett, and M. Wainwright, all of whom
frequently collaborate with the sponsor. They will serve as invaluable sources of support and
collaboration for the PI during the fellowship.

The PI will benefit greatly from working with the research sponsor to pursue the proposed
questions in optimization and adaptive control, as well as from the lively and collaborative
environment at Berkeley. The PI’s academic career goals will be supported by providing him with
the opportunity and resources to pursue compelling and independent research at the intersection
of dynamical systems, optimization, and statistics.
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