
Nicholas M. Boffi: Research Statement

Pushing beyond the limitations of classical approaches in applied and computational mathematics will
require the development and application of data-driven methods in novel problem settings. I am an applied
mathematician, and I am interested in learning, control, modeling, and simulation of complex dynamical and
spatio-temporal systems that arise in the natural sciences and engineering. I have worked in diverse fields such
as optimization, machine learning, adaptive control, soft matter physics, and condensed matter physics, with
my primary strengths lying in the areas of dynamical systems and control theory, optimization and numerical
methods, and scientific computing. As a postdoctoral researcher, I plan to develop principled machine
learning methods grounded in rigorous theory for the solution of complex high-dimensional problems in
applied mathematics such as learning dynamical systems, learning solutions to partial differential equations,
and solving inverse problems in science and engineering. Below, I outline several topics of past, current, and
future interest.

1. Adaptive control theory: I have developed and analyzed a new class of algorithms for adaptive
control that incorporate local geometry into the learning process in a manner similar to mirror descent
algorithms in optimization, leading to a publication in Neural Computation. I have performed the
first general analysis of discrete-time nonlinear adaptive control algorithms, bridging classical adaptive
control theory with modern reinforcement learning and leading to a submission to Learning for
Dynamics and Control.

2. Numerical methods for elastoplasticity: I have extended a projection algorithm for simulating
the deformation of hard elastoplastic materials in the quasi-static regime to three dimensions. I also
designed an efficient parallel implementation, leading to publications in Comp. Phys. Comm. and
Phys. Rev. E.. I have applied the method to study shear banding in bulk metallic glasses, a common
precursor to failure in such materials.

3. Optimization and machine learning: I have developed a data-driven method for determining
stability of a nonlinear dynamical system directly from trajectory data, leading to a publication in
Conference on Robot Learning. I have analyzed via limiting stochastic differential equations a class
of distributed stochastic optimization algorithms used for parallel training of deep neural networks,
leading to a publication in Neural Computation.

4. Numerical methods for condensed matter physics: I have developed an efficient algorithm for
calculating the Hartree-Fock exchange operator on a real-space grid via subspace projection, leading
to a publication in J. Chem. Th. Comp. and a publication in J. Chem. Phys. I have implemented the
algorithm in parallel as part of the the open source electronic structure package PARSEC.

Adaptive control theory

For many nonlinear dynamical systems, adaptively updating the control input to counteract modeling errors
and unknown disturbances can offer significant performance improvements at little computational expense.
The field of adaptive control studies when it is rigorously possible to do so through an online learning
mechanism. However, the design and understanding of adaptive control algorithms with provable guarantees
is a significant theoretical challenge, and most progress revolves around a few key advances. Designing new
methods and providing new insights into existing approaches from the perspective of modern optimization
and machine learning has been one focus of my research.

In collaboration with Prof. Jean-Jacques Slotine at MIT, I have developed a new suite of adaptive
control algorithms by analogy to mirror descent methods in optimization theory [1]. Mirror descent methods
incorporate local geometry into the optimization process to improve convergence guarantees [2], and provide
a unifying perspective on many first-order online convex optimization algorithms. They are also known to
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Figure 1: (Left) Euclidean adaptation compared to mirror descent-like adaptation for control with a convex combination of
primitives. The problem geometry is respected by mirror descent with respect to the negative entropy, leading to several orders
of magnitude improved performance of the mirror descent law. (Center/Right) Problem geometry can be imposed to learn
models with desired characteristics. A standard l2 (Euclidean) adaptive control law learns a Gaussian distributed vector of
parameters (center), while a new l1-regularized law leads to a sparse vector of learned parameters (right, inset shows blow-up).
Performance is equivalent in both cases.

implicitly regularize the solution when used to solve underdetermined problems, which means that they
preferentially converge to solutions with a specific structure, such as the minimum norm interpolant [3, 4].

To incorporate the advantages of mirror descent into adaptive control, I showed that replacing a quadratic
with a Bregman divergence in standard Lyapunov arguments introduces local geometry into existing adaptive
control algorithms. I proved that the incorporation of geometry implicitly regularizes the learned model
(Figure 1, center/right), and I showed empirically that these new methods can improve convergence by
exploiting knowledge of the problem geometry (Figure 1, left). Unlike in optimization, regularization
cannot be directly added to adaptive control algorithms without affecting stability and performance; here,
implicit regularization offers a principled way to regularize. I used implicit regularization to design methods
for online identification of sparse, parsimonious models consistent with trajectory data, and I considered
chemical reaction networks and Hamiltonian systems as two concrete examples. This result also answers a
long-standing question about what parameters are actually found by classic adaptive control algorithms,
and shows that such methods find the parameters of minimum l2 norm that can control the system.

In a second project, I worked with Dr. Stephen Tu, a Research Scientist at Google Brain, to revisit
nonlinear adaptive control theory from a modern reinforcement learning (RL) perspective. RL has been
the subject of significant research interest after being used to surpass human performance in the game of
Go [5] and after demonstrating strong promise in continuous control tasks such as robotics [6]. Both RL
and adaptive control study the same fundamental problem – learning to control an unknown dynamical
system – but do so from different perspectives. Adaptive control provides asymptotic guarantees for control
of the system along a single trajectory, and analysis is typically performed in continuous time. Results in
RL are generally obtained in the episodic setting, where multiple trajectories of the system are sampled,
and discrete-time systems are analyzed. Convergence results are given through non-asymptotic guarantees
on the regret, a characterization of performance defined by comparison to the best the learner could have
done given all knowledge in hindsight.

To make results between the two fields comparable, we computed regret bounds for adaptive control
algorithms in discrete time, providing the first finite-time guarantees for discrete-time adaptive control [7].
Discrete-time adaptive control algorithms are generally challenging to analyze due to the appearance of
higher-order terms that disappear in continuous time. To sidestep this issue, we leveraged results from
online learning theory not yet applied in the adaptive control context. In addition to proving regret bounds
for existing methods, we developed a new class of online convex optimization-inspired algorithms, which
were proven to maintain stability in the presence of noise and shown empirically to provide excellent control
performance.
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Figure 2: A simulation inspired by friction welding of a metallic glass, whereby disks of material on the top and bottom
boundaries are set to rotate at specified rates. The left shows a three-dimensional visualization of the deformation in the
material, while the right shows cross sections at fixed y value, revealing complex spatio-temporal shear banding dynamics. The
simulation was performed on a 768× 768× 192 computational grid.

Numerical methods for elastoplasticity

Many materials of scientific and engineering relevance exhibit elastoplastic behavior, which consists of
reversible, elastic deformation below a yield stress, and irreversible, plastic deformation above this threshold.
One prominent example is bulk metallic glass (BMG), a class of metallic alloy with an amorphous atomic-scale
structure rather than the crystalline arrangement common to most metals. This disordered structure gives
BMGs many promising characteristics, such as high tensile strength, high corrosion and wear resistance, and
the ability to be thermally processed like plastics. However, BMGs are not widely used in applications as
they often fail along a narrow localization of stress known as a shear band, a poorly understood instability.
Shear banding has been studied in two dimensions, but there are few numerical characterizations of shear
banding for realistic three-dimensional samples due to large computational expense.

In collaboration with Prof. Chris Rycroft at Harvard University, I developed a three-dimensional projection
algorithm for simulating elastoplastic deformation in the quasi-static limit [8]. The algorithm exploits an
analogy between the constitutive equations for quasi-static hypo-elastoplasticity and the Navier-Stokes
equations for incompressible fluid flow [9], and is similar to Chorin’s projection method [10, 11]. I designed
a parallel implementation of the method in C++ and Open MPI, enabling efficient large-scale simulation of
shear banding in three dimensions. Using the method, I was able to examine uniquely three-dimensional
shear banding dynamics, such as in friction welding experiments (Figure 2).

A significant step in the algorithm is the solution of an elliptic partial differential equation (PDE) for
the stress projection. The geometric multigrid algorithm often provides highly efficient solutions of linear
systems that arise from discretizing such elliptic PDEs. We developed a parallelized, three-dimensional
geometric multigrid solver in C++ and Open MPI capable of solving for arbitrary datatypes at each grid
point, which we plan to release as open source software.

The deformation of BMGs is well-described by the shear transformation zone (STZ) theory [12], a
first-principles continuum theory derived through statistical mechanics. A significant element of the STZ
theory is an effective temperature field that characterizes local structural disorder. Physically accurate
initial conditions for the effective temperature are difficult to construct, because it is not known how to
connect the field to a microscopic configuration. Molecular dynamics (MD) – whereby individual atoms are
simulated according to Newton’s laws – provides an alternative simulation approach that does not require
the introduction of a new continuum field, but incurs a higher computational expense, and as such is limited
to microscopic systems and unrealistic loading rates.

One way to find initial conditions for large-scale continuum simulation would be to perform both
simulations with the same geometry and to quantitatively match outputs. Attempts have been made in this
direction [13], but a significant impediment is a difference in boundary conditions. Due to finite size effects,
MD simulations typically employ Lees-Edwards boundary conditions, where periodic images of the domain
are manipulated to impose shear stresses. By contrast, continuum simulations generally employ moving
parallel plate boundary conditions, and naively implementing Lees-Edwards conditions poses computational
challenges, such as grid misalignment between the periodic images and the primary domain.
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Figure 3: Three-dimensional continuum simulations of shear banding dynamics with Lees-Edwards conditions (left) and pure
shear conditions (right). Boundary conditions are periodic in all directions in both cases, and shear stresses were imposed by
explicitly deforming the problem domain. Both simulations were performed on a 512× 512× 256 computational grid.

To address this issue, I developed a coordinate transformation methodology that decouples continuum
boundary conditions from material deformation, enabling precisely matching boundary conditions between
MD and continuum simulation [14]. A fixed reference domain is mapped to a deformed domain through a
time-dependent transformation, and the transformation is chosen to impose material deformation. The stress
projection is modified accordingly to incorporate transformation-dependent terms, and the resulting elliptic
problem becomes significantly more complex. I leveraged a meta-programming scheme to automatically
generate the linear system for an arbitrary transformation, so that boundary conditions can be specified
through a single 3 × 3 matrix. Using this framework, I was able to study shear banding dynamics at
continuum scale in a random, inhomogeneous environment subject to Lees-Edwards and pure shear boundary
conditions (Figure 3). A two-dimensional variant of the method is now being used by Prof. Michael Shields
at Johns Hopkins University to quantitatively match MD and continuum simulation.

Optimization and machine learning

Machine learning and data-driven methods are becoming increasingly prevalent across all fields of science
and engineering, but many questions remain unanswered in both theory and practice. A consistent theme in
my research has been feedback between dynamical systems theory and machine learning. I am particularly
interested in how continuous limits and proof techniques from dynamical systems can give insight into
machine learning and optimization algorithms, and how data-driven methods can be used for dynamical
systems modeling and control.

In a project focused on applying dynamical systems theory to machine learning algorithms, I worked
with Prof. Jean-Jacques Slotine at MIT to study distributed stochastic optimization algorithms from a
continuous-time perspective, making use of stochastic differential equations [15]. I focused on consensus-based
distributed architectures inspired by Elastic Averaging SGD (EASGD) [16], an algorithm commonly used
to parallelize training of deep networks, but which had few formal guarantees. Using dynamical systems
tools such as contraction analysis [17] and synchronization theory, I proved new convergence results in the
convex setting, providing justification for the use of EASGD in practice. I categorized a trade-off between
noise magnitude due to the stochastic approximation of the gradient and synchronization of the individual
optimization trajectories due to distributed coupling. Using this categorization, I was able to explain the
dependence of the generalization error of deep networks on several hyperparameters.

In a separate work, I collaborated with Dr. Vikas Sindhwani and Dr. Stephen Tu at Google Brain to
devise a statistical learning methodology for determining the stability of a dynamical system from trajectory
data alone, obviating the need for explicit knowledge of the dynamics [18]. Complex control policies obtained
through deep reinforcement learning have led to a recent surge in laboratory performance of modern robotic
platforms, but practitioners will be hesitant to deploy these policies in the real world without guarantees
of safety. While powerful techniques such as Lyapunov theory [19] exist for determining the stability and
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safety of a given dynamical system, these methods assume that the dynamics is known, which makes them
inapplicable to many systems of modern interest.

To address this problem, we formulated a general optimization procedure that captures several notions
of learning stability. Adapting existing theory for classifiers [20], we proved that function approximation
can be used for stability estimation, and categorized the sample complexity for several function classes of
interest, such as Reproducing Kernel Hilbert Space predictors and deep neural networks. We showed that
stability can be learned efficiently in practice, and moreover that verification of stability can be used for
downstream tasks such as adaptive control.

Condensed matter physics and quantum chemistry

Density functional theory (DFT) [21] is a prominent method for computing ground-state electronic
properties of condensed matter systems. In recent years, hybrid functionals, which mix a fraction of
the Hartree-Fock exchange-correlation functional with standard exchange-correlation functionals, have
shown impressive success in matching computations to experimentally-determined electronic properties.
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Figure 4: A density of states calculation for complex
many-electron molecules. Our method (solid) matches
existing approaches (e.g. a Gaussian basis set calculation
using NWChem, open circles for C60) and can scale to
large systems such as C240, which has 480 electrons.

The Hartree-Fock exchange can be efficiently computed
with chemically-motivated Gaussian basis sets, but these
bases do not provide a systematic way to increase accuracy
of the solution. Classical methods from approximation
theory and numerical analysis – such as finite differences,
finite elements, and discontinuous Galerkin methods – of-
fer a compelling solution, as it is possible to rigorously
quantify the gains in accuracy obtained by increasing
the grid size or resolution. However, calculation of the
exchange operator is prohibitively expensive, because its
expense scales poorly with the grid size, and because the
operator is computed hundreds or thousands of times as
a subroutine in an eigenvalue calculation. Without an
efficient way to compute the exchange operator, hybrid
functionals cannot be effectively used with these princi-
pled, mathematically-motived methods.

Based on prior work in the plane wave basis [22], I
developed an efficient algorithm for computing the Hartree-Fock exchange on a real-space grid in collaboration
with Prof. Amir Natan at Tel Aviv University [23]. The operator is projected onto the span of occupied
states and a small number of low-lying unoccupied states, so that its computational expense is primarily
set by the number of electrons in the system, rather than the grid size. We implemented the method in
parallel using OpenMP in the open source electronic structure code PARSEC [24]. Our method obtains a
100× speedup in comparison to calculation of the full operator, and can be used to efficiently calculate the
Hartree-Fock energies, dipole moments, and polarizabilities of complex molecules with essentially no loss of
accuracy (Figure 4).

Within Hartree-Fock theory, the energy of the highest occupied molecular orbital is often interpreted as
the ionization potential of the molecule, and the energy of the lowest unoccupied molecular orbital (LUMO)
is often interpreted as the electron affinity. Despite this common interpretation, there is a large discrepancy
between LUMO energies computed with different bases, and it is not clear that larger bases will lead to a
higher-accuracy calculation. Because a real-space grid provides a clear way to increase the basis size, we
used our method to analyze the dependence of unoccupied state energies and wavefunctions on the grid
size [25]. We showed that for neutral molecules, the LUMO is quantitatively predicted by a particle in a
spherical well as the grid size tends to infinity. For molecules with unoccupied states with negative energies,
small grid sizes produce a confinement effect that leads to physically incorrect positive energy values.
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