
Nicholas M. Boffi: Research Statement

I develop algorithms for modeling, simulation, and control of complex dynamical systems in the
natural sciences and engineering. My work integrates numerical analysis with machine learning to
design principled methods for high-dimensional mathematical problems that are currently out of reach
via the standard techniques of computational mathematics.

Research in computational mathematics has flourished through an emphasis on problems defined
over a low-dimensional physical space, such as those appearing in continuum mechanics. Yet,
high-dimensional mathematical problems are pervasive, and arise when the system under study
must be described by degrees of freedom beyond the ambient spatial coordinates alone. Examples
include many-body problems in quantum mechanics and statistical physics, whose solutions have
wide applications ranging from improving the energy efficiency of batteries to the design of nanoscale
devices. However, these problems cannot be addressed with the standard methods of numerical
analysis, because their computational expense typically scales poorly with the system dimension.

Methods from machine learning offer a promising solution, as recent advances have demonstrated the
remarkable ability of nonlinear parametric representations like neural networks to identify hidden
low-dimensional structure (1), thereby grappling with high-dimensionality. There stands immense
potential to bring this progress to computational mathematics (2). Yet to do so, it is necessary to
develop novel methods that combine machine learning with the traditional techniques of numerical
analysis, which come with powerful guarantees necessary for scientific applications.

My research philosophy centers on revisiting classically hard applied mathematical problems from
the lens of modern machine learning. I develop principled methods with rigorous guarantees of
convergence, accuracy, and stability that are suitable for real-world science and engineering problems.
As such, my research profile spans from algorithmic and theoretical advances in machine
learning and control theory to empirical advances in modeling and scientific simulation.

As a professor, I will lead an interdisciplinary research group that blends ideas from machine learning
with dynamical systems and numerical computation. I plan to develop an integrated applied
mathematics curriculum that fuses modern machine learning with numerical analysis.

As a primary research focus, I plan to develop methods for high-dimensional mathematical problems
built on generative models. In particular, I aim to design algorithms for high-dimensional partial
differential equations, for forecasting and coarse-graining of dynamical systems, and for optimal
control of nonequilibrium thermodynamic systems. These research thrusts build upon my earlier
work in high-dimensional scientific computing and generative modeling (3–7), machine learning and
control theory (8–15), scientific computing (16–23), and open source software development (24–28).

Learning flows for many-body Fokker-Planck equations

A canonical example of high-dimensionality arises in the statistical physics of interacting particle
systems, where the problem dimension increases linearly with the number of particles. The many-
body probability density function describes the system at microscopic granularity, and gives access to
several key quantities that cannot typically be computed without its knowledge, such as the system’s
entropy production rate (EPR). This density solves a high-dimensional Fokker-Planck equation
(FPE) (29), which is intractable when approached with the standard techniques of numerical analysis.
Leveraging neural networks and flow-based algorithms from generative modeling to design mesh-free
methods for the FPE that scale to realistic systems has been a central thrust of my recent research.
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Figure 2: MIPS. (Top) MIPS cluster as a function of particle number N . (Bottom) Calculation of the EPR (per
particle). The EPR concentrates on the interface, confirming theoretical predictions that nonequilibrium effects are
most relevant at phase boundaries (37). The network was trained with N = 4096, but due to spatial locality, can
transfer to systems of much higher dimension without additional learning. See movie, download recommended.
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Figure 1: Probability flow. Phase por-
trait of the probability flow for a single
active particle in one dimension, with po-
sition x and velocity v. This deterministic
dynamics preserves stationarity of the sys-
tem, and gives access to the EPR.

Stationary FPE. In collaboration with Professor Eric Vanden-
Eijnden (Courant Institute), I developed a method to approx-
imate solutions of the stationary FPE in high dimension (4).
The method is applicable to active matter systems at statis-
tical steady state, such as a system of particles undergoing
motility-induced phase separation (MIPS), a nonequilibrium
phenomenon defined by spontaneous coexistence of a liquid and
a gas in the absence of attractive interactions (30). Understand-
ing MIPS is important for controlling and preventing biofilm
formation, which underlies many forms of bacterial contamina-
tion (31, 32). A central goal of the active matter community
has therefore been to classify when and where nonequilibrium
effects are at play, which can be quantified by the EPR (33–37).
My method gives the first way to compute the EPR from
its first-principles definition with quantifiable accuracy
for general systems and realistic sizes. The approach
leverages recent advances in generative modeling (38), and is
built upon estimation of the score ∇ log ρ where ρ solves the
FPE. The score leads to a description of the system known as
the probability flow (Fig. 1), a deterministic dynamical system
from which the EPR can be reconstructed. I designed a novel
neural network architecture suitable for particle systems that
is permutation equivariant and spatially-local, which enables
scaling to systems of arbitrary size after training. Using it to
study a system of particles undergoing MIPS, I found that
the EPR concentrates on the interface between phases, confirming predictions from the
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theoretical physics community that could not be verified from first-principles (37, 39).
Computationally, I showed that the method scales to as many as ∼32,000 particles, corresponding
to an FPE in ∼128,000 dimensions (Fig. 2).

Time-dependent FPE. To design nanoscale engines and devices, it is often necessary to drive the
system out of equilibrium with an external control, which leads to a time-dependent FPE (40, 41).
In collaboration with Professor Eric Vanden-Eijnden, I developed a neural network-based method to
solve this equation (3), and I released an open-source implementation (25). The approach, known
as score-based transport modeling, estimates the score along self-consistent data produced by the
probability flow equation itself. I proved that the method controls the Kullback-Leibler divergence
from the model to the target, a common distance metric between probability distributions. This
guarantees that minimizing the loss systematically improves accuracy, thereby giving a
principled algorithm for high-dimensional time-dependent FPEs. I applied the method to
several driven systems, where I showed that it obtains solutions with up to three digits of relative
accuracy in as high as 100 dimensions, an intractable dimensionality for standard techniques. In
addition, I showed that the method gives stable predictions for the EPR over long time intervals.

Learning flows and diffusions for generative modeling

Figure 3: Image
super-resolution.
(Top) Low-resolution
model input. (Mid-
dle) High-resolution
model output. (Bot-
tom) Ground truth.

The algorithms I’ve developed for solving the FPE rest upon the notion of
dynamical transport of measure, which studies how maps between probability
distributions can be built from motion at the level of the samples. Rooted in
the theory of optimal transport (42, 43), this picture has emerged as a central
tool in the field of generative modeling, which studies how to sample from a
probability distribution given a set of examples. Generative modeling for images
has recently risen to fame in popular culture (44–46), and the approach holds
remarkable promise for scientific computing, with applications in solving inverse
problems (47), sampling molecular configurations for drug discovery (48), and
probabilistic forecasting of dynamical systems (49). Yet, a principled mathemat-
ical understanding of generative models is still in its infancy, which has inhibited
their widespread adoption. My work highlights a powerful connection
between modern generative models and methods for high-dimensional
Fokker-Planck equations, which I have used to enrich both fields.

Stochastic interpolants. In collaboration with Professor Eric Vanden-Eijnden
and PhD student Michael Albergo, I developed a theory known as the stochastic
interpolant method (6), and I released an open-source implementation (24).
Stochastic interpolants build a path in the space of measures between an arbitrary
“base” distribution and the target distribution by interpolating between samples. I
showed that stochastic interpolants generalize diffusion models – the current state
of the art (38) – by allowing for greater flexibility in the base and the connecting
path, and that they can be sampled either deterministically or stochastically
with an arbitrary, tunable level of noise. I used this observation to categorize the
tradeoffs between transport equations (deterministic) and FPEs (stochastic) for
sampling, where I showed that FPEs enjoy stronger theoretical guarantees and
often perform better empirically. With PhD student Mark Goldstein (6), we recently extended the
method to solve high-dimensional inverse problems such as inpainting and super-resolution (Fig. 3).
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Dynamical systems, control, and scientific computing

My current research centers on high-dimensional FPEs and generative modeling, but I maintain a
strong interest in dynamical systems, control, and scientific computing, as illustrated below.

Control and prediction. Learning a dynamical system from data can be framed in the language
of function approximation, whereby an unknown dynamics must be approximated to a desired
degree of accuracy over the state space (50). For many nonlinear dynamical systems, including
engineering systems such as self-driving cars and robots, it is critical to learn a dynamical model
online to counteract modeling errors, a problem known in control theory as adaptive control. Classical
approaches build a grid in the Fourier domain and estimate parameters in each grid cell, but the size of
the resulting model scales exponentially in the state space dimension, which prevents their application
to nearly all modern systems. With Professor Jean-Jacques Slotine (MIT) and Dr. Stephen Tu
(Google DeepMind), I developed a nonparametric algorithm with theoretical guarantees
that depend polynomially on dimension rather than exponentially (10). I showed empirically
that the method scales to control and prediction problems with dimensionality at least as high as 60,
surpassing existing approaches by an order of magnitude. To incorporate physics into the method, I
introduced a symplectic kernel that is adapted to the symmetries of Hamiltonian dynamics.
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Figure 4: Spin glass evolutionary dynamics.
(A) The genome is modeled as a sequence of
sites, and the fitness F of a genotype α is given
by the energy of the Sherrington-Kirkpatrick
spin glass (51). (B) Random evolution under ex-
perimental conditions reproduces and explains
key features of evolving populations, such as a
slow power-law fitness trajectory.

Scientific computing. I have diverse interests across the
sciences and engineering, ranging from mathematical biol-
ogy (16), to continuum mechanics (17, 18, 21), to quantum
mechanics (19, 20); my approach is unified by the use of
mathematical modeling and numerical simulation to tackle
questions that are challenging to answer either theoretically
or experimentally. In recent work with Ariel Amir (Weiz-
mann Institute), Chris Rycroft (University of Wisconsin),
and Yipei Guo (Janelia), I developed a mathematical and
computational model of microbial evolutionary dynamics
based on spin glass physics (16). Understanding evolution-
ary processes in microbes is important for preventing the
development of antibiotic resistance (52, 53), but many
basic aspects are still poorly understood. For example,
laboratory experiments have demonstrated the widespread
prevalence of microscopic epistasis (the dependence of a
mutation’s effect on the genotype) and clonal interference
(competition between strains) (54, 55). Yet, these aspects
are neglected in most studies due to their complexity, so
their effect on real-world evolving populations is unclear.
To resolve this gap, I developed a microscopic simu-
lation environment capable of matching laboratory
conditions (Fig. 4), inspired by the seminal experiment of
Richard Lenski (56, 57). I showed that epistasis leads to a
slow power-law fitness trajectory, while clonal interference
does not significantly affect the dynamics. This is an im-
portant result, because previous experimental studies
attributed slow trajectories to both phenomena (56).
I released the simulation as an open source package (26).
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Vision and future works

A primary focus of my research group will be the development of flow-based methods for high-
dimensional problems in science and engineering; I describe several intended thrusts below.

Flow-based solutions to PDEs. Learning flows is a promising way to solve high-dimensional
PDEs, because their Lagrangian frame automatically adapts to low-dimensional structure. I plan to
extend my flow-based algorithms for the FPE (3, 4) in several key ways, fusing my work in generative
modeling (5–7) with my expertise in scientific computing (17–21). I plan to investigate time-dependent
FPEs with nonlocal dynamics to design sampling algorithms that mix faster than those built on local
moves. I also plan to develop methods for time-dependent quantum mechanics (58), combining my
experience in quantum chemistry (19, 20, 22, 23) with my method for the time-dependent FPE (3).
To extend my work on the stationary FPE, I am interested in methods that directly estimate the
probability flow instead of constructing it through the score. The flow is often simpler than the
score, and can be learned from experimental data when the microscopic dynamics is unknown, which
is not possible with the score alone. I also plan to investigate self-consistent algorithms that do not
require data from the stationary density, which could avoid slow mixing present in data generation.

Forecasting and coarse-graining. Forecasting and coarse-graining of dynamical systems are
fundamental mathematical problems with wide applications across the sciences and engineering,
ranging from weather prediction, to motion planning, to model order reduction. I intend to design
algorithms for these tasks that combine my work in generative modeling (5–7) with my work in
dynamical systems and control (8–13).

To forecast, we can sample the conditional distribution of a future state given the current state using a
generative model. Some forecasting problems require real-time inference, such as in engineering, while
others may not need such rapid inference. This problem is therefore ripe to explore the computational
tradeoffs between deterministic and stochastic models, an investigation I have already begun (6).
For many forecasting problems, there are physical constraints and symmetries present in the state,
and I intend to design models that build these properties into their transport explicitly. One possible
approach is to define a path in the space of measures via the minimum action method (59, 60).

Experimental systems modeled by stochastic differential equations are regularly partially observed,
meaning that some internal state variables cannot be measured. A lower-dimensional equation
for the microscopic density of the observed variables can often be defined by marginalization, but
an unknown velocity appears in its governing equation (61, 62). I plan to develop methods for
coarse-graining that estimate this velocity directly by analogy to the stochastic interpolant method.

Control of nanoscale systems. Efficient control of nanoscale systems is a central goal of modern
nonequilibrium thermodynamics, as it promises hope for both the design of efficient synthetic
molecular machines and the improved understanding of living systems (34, 63). This is an optimal
control problem where one seeks to minimize the dissipation of energy, so as to maximize the
amount of useful work produced by the machine (64). The dissipation can be related to the total
entropy production (41), which could not be computed for generic nonequilibrium systems before the
development of my score-based algorithms (3, 4). Building on my work in control theory (9–12), I plan
to develop methods that minimize the total entropy production in an outer loop wrapped around its
computation. To render these methods efficient, I plan to leverage recent advances in reinforcement
learning, which has demonstrated great practical success in the solution of high-dimensional optimal
control problems but has not yet been significantly explored in nonequilibrium thermodynamics.
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