Below is a list of my publications. In all likelihood, it’s a bit out of date. For the most up to date list, please check my Google Scholar profile.
In the below lists, an asterisk (*) denotes equal contribution with alphabetical or randomized ordering.
preprints
- Nicholas M. Boffi*, Michael S. Albergo*, and Eric Vanden-Eijnden. “Flow map matching.” arXiv:2406.07507 (2024). arxiv
- Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and Saining Xie. “SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers.” arXiv:2401.08740 (2024). arxiv
- Michael S. Albergo*, N. M. Boffi*, and Eric Vanden-Eijnden. “Stochastic Interpolants: A Unifying Framework for Flows and Diffusions.” arXiv:2303.08797 (2023). arXiv
publications
- Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. “Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes.” International Conference on Machine Learning (2024). arxiv
- Michael S. Albergo, Mark Goldstein, N. M. Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden. “Stochastic interpolants with data-dependent couplings.” International Conference on Machine Learning (spotlight) (2024). arXiv
- N. M. Boffi and Eric Vanden-Eijnden. “Deep learning probability flows and entropy production rates in active matter.” Proceedings of the National Academy of Sciences 121 (25) e2318106121, 2024. arXiv / journal
- Michael S. Albergo, N. M. Boffi, Michael Lindsey, and Eric Vanden-Eijnden. “Multimarginal generative modeling with stochastic interpolants.” International Conference on Learning Representations (2024). arXiv
- N. M. Boffi and Eric Vanden-Eijnden. “Probability flow solution of the Fokker-Planck equation,” Machine Learning: Science and Technology (2023). journal / arXiv
- N. M. Boffi, Yipei Guo, Chris H. Rycroft, Ariel Amir. “How microscopic epistasis and clonal interference shape the fitness trajectory in a spin glass model of microbial long-term evolution,” eLife 12 (2023). journal / biorXiv
- Saminda Abeyruwan, Alex Bewley, N. M. Boffi, Krzysztof Marcin Choromanski, David B D’Ambrosio, Deepali Jain, Pannag R Sanketi, Anish Shankar, Vikas Sindhwani, Sumeet Singh, Jean-Jacques Slotine, Stephen Tu. “Agile Catching with Whole-Body MPC and Blackbox Policy Learning,” Learning for Dynamics and Control (L4DC) 2023. conference
- N. M. Boffi*, Stephen Tu*, and Jean-Jacques Slotine. “Non-parametric adaptive control and prediction: theory and randomized algorithms,” Journal of Machine Learning Research 23 (2022) 1-46. journal / conference / arXiv
- Thomas Zhang, Stephen Tu, N. M. Boffi, Jean-Jacques Slotine, and Nikolai Matni. “Adversarially robust stability certificates can be sample efficient,” Learning for Dynamics and Control (L4DC 2022). conference / arXiv
- N. M. Boffi*, Stephen Tu*, Jean-Jacques E. Slotine, “The role of optimization geometry in single neuron learning,” International Conference on Artificial Intelligence and Statistics (2022). conference / arXiv
- Katiana Kontolati, Darius Alix-Williams, N. M. Boffi, Michael L. Falk, Chris H. Rycroft, and Michael D. Shields. “Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids,” Acta Materialia, 215:1170008 (2021). journal / arxiv
- N. M. Boffi*, Stephen Tu*, Jean-Jacques E. Slotine, “Regret bounds for adaptive nonlinear control,” Learning for Dynamics and Control (L4DC 2021). selected for oral presentation. conference / arXiv
- N. M. Boffi*, Stephen Tu*, Nikolai Matni, Jean-Jacques E. Slotine, Vikas Sindhwani, “Learning stability certificates from data,” Conference on Robot Learning (CoRL) 2020. conference / arXiv
- N. M. Boffi, Jean-Jacques E. Slotine, “Implicit regularization and momentum algorithms in nonlinearly parameterized adaptive control and prediction,” Neural Computation, 33(3):590-673, 03 2021. featured on the cover. journal / arXiv
- N. M. Boffi, Chris H. Rycroft, “Coordinate transformation methodology for simulating quasi-static elastoplastic solids,” Physical Review E 101, 053304 (2020). journal / arXiv
- N. M. Boffi, Chris H. Rycroft, “Parallel three-dimensional simulations of quasi-static elastoplastic solids,” Computer Physics Communications 257, 107254 (2020). journal / arXiv
- N. M. Boffi, Jean-Jacques E. Slotine, “A continuous-time analysis of distributed stochastic gradient,” Neural Computation 32, 36-96 (2020). journal / arXiv
- N. M. Boffi, Manish Jain, Amir Natan, “Efficient computation of the Hartree-Fock Exchange in real-space with projection operators,” Journal of Chemical Theory and Computation 12, (8) (2016). journal
- N. M. Boffi, Manish Jain, Amir Natan, “Asymptotic behavior and interpretation of virtual states: the effects of confinement and of basis sets,” Journal of Chemical Physics 144, 084104 (2016). journal
- N. M. Boffi, Judith C. Hill, Matthew G. Reuter, “Characterizing the inverses of block tridiagonal, block Toeplitz matrices,” Computational Science and Discovery 8, 015001 (2015). journal
- Matthew G. Reuter, N. M. Boffi, Mark A. Ratner, Tamar Seideman, “The role of dimensionality in the decay of surface effects,” Journal of Chemical Physics 138, 084707 (2013). journal